223 research outputs found

    Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge

    Full text link
    We envision a mobile edge computing (MEC) framework for machine learning (ML) technologies, which leverages distributed client data and computation resources for training high-performance ML models while preserving client privacy. Toward this future goal, this work aims to extend Federated Learning (FL), a decentralized learning framework that enables privacy-preserving training of models, to work with heterogeneous clients in a practical cellular network. The FL protocol iteratively asks random clients to download a trainable model from a server, update it with own data, and upload the updated model to the server, while asking the server to aggregate multiple client updates to further improve the model. While clients in this protocol are free from disclosing own private data, the overall training process can become inefficient when some clients are with limited computational resources (i.e. requiring longer update time) or under poor wireless channel conditions (longer upload time). Our new FL protocol, which we refer to as FedCS, mitigates this problem and performs FL efficiently while actively managing clients based on their resource conditions. Specifically, FedCS solves a client selection problem with resource constraints, which allows the server to aggregate as many client updates as possible and to accelerate performance improvement in ML models. We conducted an experimental evaluation using publicly-available large-scale image datasets to train deep neural networks on MEC environment simulations. The experimental results show that FedCS is able to complete its training process in a significantly shorter time compared to the original FL protocol

    Λ\Lambda-Split: A Privacy-Preserving Split Computing Framework for Cloud-Powered Generative AI

    Full text link
    In the wake of the burgeoning expansion of generative artificial intelligence (AI) services, the computational demands inherent to these technologies frequently necessitate cloud-powered computational offloading, particularly for resource-constrained mobile devices. These services commonly employ prompts to steer the generative process, and both the prompts and the resultant content, such as text and images, may harbor privacy-sensitive or confidential information, thereby elevating security and privacy risks. To mitigate these concerns, we introduce Λ\Lambda-Split, a split computing framework to facilitate computational offloading while simultaneously fortifying data privacy against risks such as eavesdropping and unauthorized access. In Λ\Lambda-Split, a generative model, usually a deep neural network (DNN), is partitioned into three sub-models and distributed across the user's local device and a cloud server: the input-side and output-side sub-models are allocated to the local, while the intermediate, computationally-intensive sub-model resides on the cloud server. This architecture ensures that only the hidden layer outputs are transmitted, thereby preventing the external transmission of privacy-sensitive raw input and output data. Given the black-box nature of DNNs, estimating the original input or output from intercepted hidden layer outputs poses a significant challenge for malicious eavesdroppers. Moreover, Λ\Lambda-Split is orthogonal to traditional encryption-based security mechanisms, offering enhanced security when deployed in conjunction. We empirically validate the efficacy of the Λ\Lambda-Split framework using Llama 2 and Stable Diffusion XL, representative large language and diffusion models developed by Meta and Stability AI, respectively. Our Λ\Lambda-Split implementation is publicly accessible at https://github.com/nishio-laboratory/lambda_split.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Deep Reinforcement Learning-Based Channel Allocation for Wireless LANs with Graph Convolutional Networks

    Get PDF
    Last year, IEEE 802.11 Extremely High Throughput Study Group (EHT Study Group) was established to initiate discussions on new IEEE 802.11 features. Coordinated control methods of the access points (APs) in the wireless local area networks (WLANs) are discussed in EHT Study Group. The present study proposes a deep reinforcement learning-based channel allocation scheme using graph convolutional networks (GCNs). As a deep reinforcement learning method, we use a well-known method double deep Q-network. In densely deployed WLANs, the number of the available topologies of APs is extremely high, and thus we extract the features of the topological structures based on GCNs. We apply GCNs to a contention graph where APs within their carrier sensing ranges are connected to extract the features of carrier sensing relationships. Additionally, to improve the learning speed especially in an early stage of learning, we employ a game theory-based method to collect the training data independently of the neural network model. The simulation results indicate that the proposed method can appropriately control the channels when compared to extant methods

    Differentially Private AirComp Federated Learning with Power Adaptation Harnessing Receiver Noise

    Full text link
    Over-the-air computation (AirComp)-based federated learning (FL) enables low-latency uploads and the aggregation of machine learning models by exploiting simultaneous co-channel transmission and the resultant waveform superposition. This study aims at realizing secure AirComp-based FL against various privacy attacks where malicious central servers infer clients' private data from aggregated global models. To this end, a differentially private AirComp-based FL is designed in this study, where the key idea is to harness receiver noise perturbation injected to aggregated global models inherently, thereby preventing the inference of clients' private data. However, the variance of the inherent receiver noise is often uncontrollable, which renders the process of injecting an appropriate noise perturbation to achieve a desired privacy level quite challenging. Hence, this study designs transmit power control across clients, wherein the received signal level is adjusted intentionally to control the noise perturbation levels effectively, thereby achieving the desired privacy level. It is observed that a higher privacy level requires lower transmit power, which indicates the tradeoff between the privacy level and signal-to-noise ratio (SNR). To understand this tradeoff more fully, the closed-form expressions of SNR (with respect to the privacy level) are derived, and the tradeoff is analytically demonstrated. The analytical results also demonstrate that among the configurable parameters, the number of participating clients is a key parameter that enhances the received SNR under the aforementioned tradeoff. The analytical results are validated through numerical evaluations.Comment: 6 pages, 4 figure
    corecore